II B.Tech - I Semester - Regular / Supplementary Examinations DECEMBER 2023

FUNDAMENTALS OF DIGITAL LOGIC DESIGN

(Common for CSE, IT)
Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Convert the following base conversions using Number System. i. $(365.24)_{10}$ to $(?)_{2}$ ii. $(333.45)_{8}$ to $(?)_{2}$ iii. (A B 7.D $)_{16}$ to(? $)_{8}$	L2	CO1	7 M
	b)	i. Convert the $(1110001.10001)_{2}$ binary number to decimal, hexadecimal and octal numbers. ii. Subtract $(11111)_{2}$ from $(10101)_{2}$ using 2 's complement method.	L2	CO1	7 M
OR					
2	a)	Show the Gray code for the following decimal numbers. i. $(73)_{10}$ ii. $(77)_{10}$	L2	CO1	7 M

	b)	Show the Excess 3 code for the following decimal numbers. i. $(1111)_{10}$ ii. $(11)_{16}$	L2	CO1	7 M
UNIT-II					
3	a)	Using Boolean laws verify the following equation. $(\mathbf{X}+\overline{\mathbf{Y}}+\mathbf{X Y})(\mathbf{X}+\overline{\mathbf{Y}}) \overline{\mathbf{X}} \mathbf{Y}=\mathbf{0}$	L2	CO 2	7 M
	b)	Using Boolean laws prove that $\mathbf{x y}+\overline{\mathbf{x}}+\mathbf{y z}=\overline{\mathbf{x}}+\mathbf{y}$	L2	CO 2	7 M
OR					
4	a)	Minimize the expression using K-map. $\mathbf{Y}=\overline{\mathbf{A}} \mathbf{B} \overline{\mathbf{C}} \overline{\mathbf{D}}+\overline{\mathbf{A}} \mathbf{B} \overline{\mathbf{C}} \mathbf{D}+\mathbf{A B} \overline{\mathbf{C}} \overline{\mathbf{D}}+\mathbf{A B} \overline{\mathbf{C}} \mathbf{D}+\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}} \mathbf{D}+\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C} \overline{\mathbf{D}}$	L3	CO 2	7 M
	b)	Obtain the simplified expression in product of sums using K-map and draw the circuit diagram. $\mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\pi(\mathbf{2}, 7, \mathbf{8}, \mathbf{9 , 1 0 , 1 2)}$	L3	CO2	7 M
UNIT-III					
5	a)	Design a BCD code to excess-3 code converter and draw the logic diagram.	L3	CO3	7 M
	b)	$\begin{array}{l}\text { Design a full-subtractor with two } \\ \text { half-subtractors and an OR gate. }\end{array}$	L3	CO3	7 M
OR					
6	a)	Draw the truth table and the circuit for 3:8 decoder and explain.	L3	CO3	7 M
	b)	Show the truth table of 4-bit priority encoder and design the logical circuit of the 4-bit priority encoder.	L3	CO3	7 M

UNIT-IV

| 7 | a) | Design the conversion logic to convert
 SR flip-flop into T flip-flop. | L4 | CO3 | 7M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b) | Compare combinational and sequential
 circuits. | L2 | CO4 | 7 M | |

OR

8	a)	Design the conversion logic to convert JK flip-flop into D flip-flop.	L4	CO4	7 M
b)	Show the excitation table of the following flip-flops. i. JK flip-flop ii D flip-flop	L2	CO3	7 M	

UNIT-V

9	a)	Design a BCD ripple counter using JK flip-flops.	L3	CO3	7 M
b)	Design a three bit bi-directional shift register that shifts the bits to left when a control variable E $=0$ and shifts the bits to right when E = 1 using D flip-flops.	L4	CO3	7 M	

OR

10	a)	Design a 4-bit Johnson counter.	L4	CO4	7 M
	b)	Compare and contrast the synchronous counters with the asynchronous counters.	L2	CO3	7 M

